commit
3355e5e7a3
@ -0,0 +1,396 @@ |
||||
import numpy as np |
||||
import plotly.graph_objects as go |
||||
from tqdm.notebook import tqdm |
||||
import plotly.express as px |
||||
import matplotlib as mpl |
||||
mpl.rcParams['figure.dpi'] = 300 |
||||
import matplotlib.pyplot as plt |
||||
import seaborn as sns |
||||
import os |
||||
from wand.image import Image as WImage |
||||
# sns.set(palette="husl",font_scale=1) |
||||
# %config InlineBackend.figure_format = 'retina' |
||||
import copy |
||||
np.random.seed(0) |
||||
%load_ext line_profiler |
||||
|
||||
|
||||
|
||||
#Define constants |
||||
|
||||
#L = 2*np.pi # periodic domain size |
||||
L=20 |
||||
# define boundaries of simulation box |
||||
x0 = 0 |
||||
x1 = L |
||||
z0 = 0 |
||||
z1 = L |
||||
|
||||
# define reinforcement learning problem |
||||
N_states = 12 # number of states - one for each coarse-grained degree of vorticity |
||||
N_actions = 4 # number of actions - one for each coarse-grained swimming direction |
||||
|
||||
# numerical parameters |
||||
dt = 0.01 # timestep size |
||||
|
||||
|
||||
|
||||
#Utility functions |
||||
|
||||
def moving_average(a, n=3) : |
||||
ret = np.cumsum(a, dtype=float) |
||||
ret[n:] = ret[n:] - ret[:-n] |
||||
return ret[n - 1:] / n |
||||
|
||||
# Runga-Kutta 4(5) integration for one step |
||||
# see https://stackoverflow.com/questions/54494770/how-to-set-fixed-step-size-with-scipy-integrate |
||||
def DoPri45Step(f,t,x,h): |
||||
|
||||
k1 = f(t,x) |
||||
k2 = f(t + 1./5*h, x + h*(1./5*k1) ) |
||||
k3 = f(t + 3./10*h, x + h*(3./40*k1 + 9./40*k2) ) |
||||
k4 = f(t + 4./5*h, x + h*(44./45*k1 - 56./15*k2 + 32./9*k3) ) |
||||
k5 = f(t + 8./9*h, x + h*(19372./6561*k1 - 25360./2187*k2 + 64448./6561*k3 - 212./729*k4) ) |
||||
k6 = f(t + h, x + h*(9017./3168*k1 - 355./33*k2 + 46732./5247*k3 + 49./176*k4 - 5103./18656*k5) ) |
||||
|
||||
v5 = 35./384*k1 + 500./1113*k3 + 125./192*k4 - 2187./6784*k5 + 11./84*k6 |
||||
k7 = f(t + h, x + h*v5) |
||||
v4 = 5179./57600*k1 + 7571./16695*k3 + 393./640*k4 - 92097./339200*k5 + 187./2100*k6 + 1./40*k7; |
||||
|
||||
return v4,v5 |
||||
|
||||
|
||||
|
||||
#Define useful data structures |
||||
#Define a dictionary of the possible states and their assigned indices |
||||
|
||||
direction_states = ["right","down","left","up"] # coarse-grained directions |
||||
vort_states = ["w+", "w0", "w-"] # coarse-grained levels of vorticity |
||||
product_states = [(x,y) for x in direction_states for y in vort_states] # all possible states |
||||
state_lookup_table = {product_states[i]:i for i in range(len(product_states))} # returns index of given state |
||||
# print(product_states) # to view mapping |
||||
|
||||
#Define an agent class for reinforcement learning |
||||
|
||||
class Agent: |
||||
def __init__(self, Ns): |
||||
self.r = np.zeros(Ns) # reward for each stage |
||||
self.t = 0 # time |
||||
|
||||
# calculate reward given from entering a new state after a selected action is undertaken |
||||
def calc_reward(self): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
def update_state(self): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
def take_random_action(self): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
def take_greedy_action(self, Q): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
#Define swimmer class derived from agent |
||||
|
||||
class Swimmer(Agent): |
||||
def __init__(self, Ns): |
||||
# call init for superclass |
||||
super().__init__(Ns) |
||||
|
||||
# local position within the periodic box. X = [x, z]^T with 0 <= x < 2 pi and 0 <= z < 2 pi |
||||
self.X = np.array([np.random.uniform(0, L), np.random.uniform(0, L), 0]) |
||||
|
||||
# absolute position. -inf. <= x_total < inf. and -inf. <= z_total < inf. |
||||
self.X_total = self.X |
||||
|
||||
# particle orientation |
||||
self.theta = np.random.uniform(0, 2*np.pi) # polar angle theta in the x-z plane |
||||
self.p = np.array([np.cos(self.theta), np.sin(self.theta)]) # p = [px, pz]^T |
||||
|
||||
# translational and rotational velocity |
||||
self.U = np.zeros(3) |
||||
self.W = np.array([0, 0, 1]) #Velocidad angular aleatoria |
||||
|
||||
# preferred swimming direction (equal to [1,0], [0,1], [-1,0], or [0,-1]) |
||||
self.ka = np.array([0,1]) |
||||
|
||||
# history of local and global position. Only store information for this episode. |
||||
self.history_X = [self.X] |
||||
self.history_X_total = [self.X_total] |
||||
|
||||
# local vorticity at the current location |
||||
_, _, self.w = tgv(self.X[0], self.X[1]) |
||||
|
||||
# update coarse-grained state |
||||
self.update_state() |
||||
|
||||
#obstáculos |
||||
self.obstacles= self.generate_obstacles() |
||||
|
||||
def generate_obstacles(self): |
||||
obstacles=[] #el numero de obstáculos será 10*10 |
||||
cell_spacing= L/30 |
||||
|
||||
for i in range(20): |
||||
for j in range(20): |
||||
obstacle_x= i + cell_spacing |
||||
obstacle_z= j + cell_spacing |
||||
obstacles.append(obstacle_x) |
||||
obstacles.append(obstacle_z) |
||||
|
||||
return obstacles |
||||
|
||||
def interaction_with_obstacles(self,obstacles, sigma,ni,kappa,alpha,beta,gamma,Pe,dt): |
||||
F= np.array([0.,0.,0.]) |
||||
for i in range(len(obstacles)//2): |
||||
#F1 |
||||
obstacle_position = np.array([obstacles[2*i],obstacles[2*i+1], 0]) |
||||
r=self.X - obstacle_position |
||||
r_norm=np.linalg.norm(r) |
||||
Re= sigma**2*np.linalg.norm(self.W)/ni |
||||
S=1/(1+np.exp(-kappa*((Re/r_norm**3)-Re))) |
||||
F1=alpha*(Re/r**3)*np.cross(self.U,self.W)*S |
||||
|
||||
#F2 |
||||
F2=beta*np.cross(self.W,r)/r_norm**3 |
||||
|
||||
#F de atracción |
||||
F_attr= gamma*(np.exp(-r_norm/kappa)/r_norm**2)*(kappa+r_norm)*r |
||||
|
||||
|
||||
#Fuerza total |
||||
F+=F1+F2+F_attr |
||||
|
||||
xi=np.random.normal(0,1, size=2) #vector de números aleatorios generados a partir de una distribución normal estándar con dos componentes, xi creo que es un vector de ruido estocástico (modela el ruido térmico) |
||||
dr_therm = np.sqrt(2*sigma**2*dt/Pe)*xi |
||||
|
||||
dr = F[:-1]*dt + dr_therm |
||||
|
||||
#actualizamos la posición del spinner |
||||
self.X[:-1] += dr |
||||
|
||||
#comprobamos que el spinner siga dentro del box periódico |
||||
self.check_in_box() |
||||
|
||||
|
||||
def reinitialize(self): |
||||
self.X = np.array([np.random.uniform(0, L), np.random.uniform(0, L)]) |
||||
self.X_total = self.X |
||||
|
||||
self.theta = np.random.uniform(0, 2*np.pi) # polar angle theta in the x-z plane |
||||
self.p = np.array([np.cos(self.theta), np.sin(self.theta)]) # p = [px, pz]^T # orientación del nadador |
||||
|
||||
self.U = np.zeros(2) |
||||
self.W = np.zeros(2) |
||||
|
||||
self.ka = np.array([0,1]) |
||||
|
||||
self.history_X = [self.X] |
||||
self.history_X_total = [self.X_total] |
||||
|
||||
self.t = 0 |
||||
|
||||
def update_kinematics(self, Φ, Ψ, D0 = 0, Dr = 0, int_method = "euler"): # Actualiza la posición y orientación del nadador según un método de integración especificado. |
||||
if int_method == "rk45": |
||||
y0 = np.concatenate((self.X,self.p)) |
||||
_, v5 = DoPri45Step(self.calc_velocity_rk45,self.t,y0,dt) |
||||
y = y0 + dt*v5 |
||||
self.X = y[:2] |
||||
self.p = y[2:] |
||||
dx = self.X - self.history_X[-1] |
||||
self.X_total = self.X_total + dx |
||||
|
||||
# check if still in the periodic box |
||||
self.check_in_box() |
||||
|
||||
# ensure the vector p has unit length |
||||
self.p /= (self.p[0]**2 + self.p[1]**2)**(1/2) |
||||
|
||||
# update polar angle |
||||
x = self.p[0] |
||||
yy = self.p[1] |
||||
self.theta = np.arctan2(yy,x) if yy >= 0 else (np.arctan2(yy,x) + 2*np.pi) |
||||
|
||||
# store positions |
||||
self.history_X.append(self.X) |
||||
self.history_X_total.append(self.X_total) |
||||
|
||||
elif int_method == "euler": |
||||
# calculate new translational and rotational velocity |
||||
self.calc_velocity(Φ, Ψ) |
||||
|
||||
self.update_position(int_method, D0) |
||||
self.update_orientation(int_method, Dr) |
||||
else: |
||||
raise Exception("Integration method must be 'Euler' or 'rk45'") |
||||
|
||||
self.t = self.t + dt |
||||
|
||||
def calc_velocity_rk45(self, t, y): #calcula la velocidad del nadador en un determinado tiempo 't' y estado 'y' utilizando Rk45 |
||||
x = y[0] |
||||
z = y[1] |
||||
px = y[2] |
||||
pz = y[3] |
||||
ux, uz, self.w = tgv(x, z) #tgv proporciona velocidades de flujo en la posición (x,z), w es la vorticidad |
||||
|
||||
#cálculo de las velocidades translacionales |
||||
U0 = ux + Φ*px #ux y uz son las velocidades del flujo |
||||
U1 = uz + Φ*pz |
||||
|
||||
#cálculo de las velocidades rotacionales |
||||
ka_dot_p = self.ka[0]*px + self.ka[1]*pz #alineación del vector de nado preferido con la dirección del nadador |
||||
W0 = 1/2/Ψ*(self.ka[0] - ka_dot_p*px) + 1/2*pz*self.w |
||||
W1 = 1/2/Ψ*(self.ka[1] - ka_dot_p*pz) + 1/2*-px*self.w |
||||
|
||||
return np.array([U0, U1, W0, W1]) |
||||
|
||||
|
||||
def update_position(self, int_method, D0): #D0 representa la difusión |
||||
# use explicit euler to update |
||||
dx = dt*self.U |
||||
if D0 > 0: dx = dx + np.sqrt(2*D0*dt)*np.random.normal(size=2) #posible efecto de la difusión browniana |
||||
self.X = self.X + dx |
||||
self.X_total = self.X_total + dx |
||||
|
||||
# check if still in the periodic box |
||||
self.check_in_box() |
||||
|
||||
# store positions |
||||
self.history_X.append(self.X) |
||||
self.history_X_total.append(self.X_total) |
||||
|
||||
|
||||
def update_orientation(self, int_method, Dr): |
||||
self.p = self.p + dt*self.W #W velocidad angular |
||||
|
||||
# ensure the vector p has unit length |
||||
self.p /= (self.p[0]**2 + self.p[1]**2)**(1/2) |
||||
|
||||
# if rotational diffusion is present |
||||
if Dr > 0: #Dr representa difucion rotacional |
||||
px = self.p[0] |
||||
pz = self.p[1] |
||||
cross = px*pz |
||||
A = np.array([[1-px**2, -cross], [-cross, 1-pz**2]]) #A es una matriz |
||||
v = np.sqrt(2*Dr*dt)*np.random.normal(size=2) #v es un vector de valores aleatorios |
||||
self.p[0] = self.p[0] + A[0,0]*v[0] + A[0,1]*v[1] #Se calcula un cambio aleatorio en la orientación usando A y v |
||||
self.p[1] = self.p[1] + A[1,0]*v[0] + A[1,1]*v[1] |
||||
self.p /= (self.p[0]**2 + self.p[1]**2)**(1/2) |
||||
|
||||
# update polar angle |
||||
x = self.p[0] |
||||
y = self.p[1] |
||||
self.theta = np.arctan2(y,x) if y >= 0 else (np.arctan2(y,x) + 2*np.pi) |
||||
|
||||
|
||||
|
||||
def calc_velocity(self, Φ, Ψ): |
||||
ux, uz, self.w = tgv(self.X[0], self.X[1]) |
||||
|
||||
# careful - computing in the following way is significantly slower: self.U = np.array(ux, uz) + Φ*self.p |
||||
self.U[0] = ux + Φ*self.p[0] |
||||
self.U[1] = uz + Φ*self.p[1] |
||||
|
||||
px = self.p[0] |
||||
pz = self.p[1] |
||||
ka_dot_p = self.ka[0]*px + self.ka[1]*pz |
||||
self.W[0] = 1/2/Ψ*(self.ka[0] - ka_dot_p*px) + 1/2*pz*self.w |
||||
self.W[1] = 1/2/Ψ*(self.ka[1] - ka_dot_p*pz) + 1/2*-px*self.w |
||||
|
||||
|
||||
def check_in_box(self): # Este método verifica si el nadador todavía está dentro del cuadro periódico |
||||
if self.X[0] < x0: |
||||
self.X[0] += L |
||||
elif self.X[0] > x1: |
||||
self.X[0] -= L |
||||
if self.X[1] < z0: |
||||
self.X[1] += L |
||||
elif self.X[1] > z1: |
||||
self.X[1] -= L |
||||
|
||||
def calc_reward(self, n): |
||||
self.r[n] = self.history_X_total[-1][1]-self.history_X_total[-2][1] |
||||
|
||||
def update_state(self): |
||||
if self.w < -0.33: |
||||
w_state = "w-" |
||||
elif self.w >= -0.33 and self.w <= 0.33: |
||||
w_state = "w0" |
||||
elif self.w > 0.33: |
||||
w_state = "w+" |
||||
else: |
||||
raise Exception("Invalid value of w detected: ", w) |
||||
|
||||
if self.theta >= np.pi/4 and self.theta < 3*np.pi/4: |
||||
p_state = "up" |
||||
elif self.theta >= 3*np.pi/4 and self.theta < 5*np.pi/4: |
||||
p_state = "left" |
||||
elif self.theta >= 5*np.pi/4 and self.theta < 7*np.pi/4: |
||||
p_state = "down" |
||||
elif (self.theta >= 7*np.pi/4 and self.theta <= 2*np.pi) or (self.theta >= 0 and self.theta < np.pi/4): |
||||
p_state = "right" |
||||
else: |
||||
raise Exception("Invalid value of theta detected: ", theta) |
||||
|
||||
self.my_state = (p_state, w_state) |
||||
|
||||
def take_greedy_action(self, Q): |
||||
state_index = state_lookup_table[self.my_state] |
||||
action_index = np.argmax(Q[state_index]) # find largest entry in this row of Q (i.e. this state) |
||||
if action_index == 0: # up |
||||
self.ka = [0, 1] |
||||
elif action_index == 1: # down |
||||
self.ka = [0, -1] |
||||
elif action_index == 2: # right |
||||
self.ka = [1, 0] |
||||
else: # left |
||||
self.ka = [-1, 0] |
||||
return action_index |
||||
|
||||
def take_random_action(self): |
||||
action_index = np.random.randint(4) |
||||
if action_index == 0: # up |
||||
self.ka = [0, 1] |
||||
elif action_index == 1: # down |
||||
self.ka = [0, -1] |
||||
elif action_index == 2: # right |
||||
self.ka = [1, 0] |
||||
else: # left |
||||
self.ka = [-1, 0] |
||||
return action_index |
||||
|
||||
|
||||
#Define Taylor-Green vortex |
||||
|
||||
# given position, return local velocity and vorticity |
||||
def tgv(x, z): |
||||
ux = -1/2*np.cos(x)*np.sin(z) |
||||
uz = 1/2*np.sin(x)*np.cos(z) |
||||
w = -np.cos(x)*np.cos(z) |
||||
return ux, uz, w |
||||
|
||||
|
||||
#Plot |
||||
|
||||
Ns = 5000 |
||||
spinner = Swimmer(Ns) |
||||
traj = [] |
||||
obstacles = spinner.generate_obstacles() |
||||
for i in range(Ns): |
||||
spinner.interaction_with_obstacles(obstacles, 1, 1e-6, 2.5, 1, 1., 2.5e-4, 10000, 0.001) |
||||
traj.append(spinner.X[0]) |
||||
traj.append(spinner.X[1]) |
||||
|
||||
fig, ax= plt.subplots(1,1) |
||||
ax.plot(traj[::2], traj[1::2]) |
||||
ax.plot(obstacles[::2], obstacles[1::2], '.') |
||||
print(obstacles[::2]) |
||||
plt.show() |
Loading…
Reference in new issue