parent
59e2b0291c
commit
0c3bc404f0
@ -0,0 +1,543 @@ |
||||
#!/usr/bin/env python3 |
||||
# -*- coding: utf-8 -*- |
||||
""" |
||||
Created on Tue Feb 6 19:02:32 2024 |
||||
|
||||
@author: marta |
||||
""" |
||||
|
||||
import numpy as np |
||||
import math |
||||
#import plotly.graph_objects as go |
||||
#from tqdm.notebook import tqdm |
||||
#import plotly.express as px |
||||
import matplotlib as mpl |
||||
mpl.rcParams['figure.dpi'] = 300 |
||||
import matplotlib.pyplot as plt |
||||
#import seaborn as sns |
||||
import os |
||||
#from wand.image import Image as WImage |
||||
# sns.set(palette="husl",font_scale=1) |
||||
# %config InlineBackend.figure_format = 'retina' |
||||
import copy |
||||
np.random.seed(69732) |
||||
#%load_ext line_profiler |
||||
|
||||
|
||||
|
||||
#Define constants |
||||
|
||||
#L = 2*np.pi # periodic domain size |
||||
L=50 |
||||
# define boundaries of simulation box |
||||
x0 = 0 |
||||
x1 = L |
||||
z0 = 0 |
||||
z1 = L |
||||
|
||||
# define reinforcement learning problem |
||||
N_states = 4 # number of states - one for each coarse-grained degree of vorticity |
||||
N_actions = 2 # number of actions - one for each coarse-grained swimming direction |
||||
|
||||
# numerical parameters |
||||
#dt = 0.00001 # timestep size |
||||
|
||||
|
||||
|
||||
#Define useful data structures |
||||
#Define a dictionary of the possible states and their assigned indices |
||||
|
||||
distance_states = ["ri", "rni"] #ri es rij<rct y rni es rij>rct |
||||
frecuency_states = ["wo", "wh"] #wo es w<wc y wh es w>wc |
||||
product_states = [(x,y) for x in distance_states for y in frecuency_states] # all possible states |
||||
state_lookup_table = {product_states[i]:i for i in range(len(product_states))} # returns index of given state |
||||
# print(product_states) # to view mapping |
||||
|
||||
#Define an agent class for reinforcement learning |
||||
|
||||
class Agent: |
||||
def __init__(self, Ns): |
||||
self.r = np.zeros(Ns) # reward for each stage |
||||
self.t = 0 # time |
||||
|
||||
# calculate reward given from entering a new state after a selected action is undertaken |
||||
def calc_reward(self): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
def update_state(self): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
def take_random_action(self): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
def take_greedy_action(self, Q): |
||||
# enforce implementation by subclass |
||||
if self.__class__ == AbstractClass: |
||||
raise NotImplementedError |
||||
|
||||
#Define swimmer class derived from agent |
||||
|
||||
class Swimmer(Agent): |
||||
def __init__(self, Ns, ni, sigma): |
||||
# call init for superclass |
||||
super().__init__(Ns) |
||||
|
||||
self.ni = ni |
||||
self.sigma = sigma |
||||
|
||||
#obstáculos |
||||
self.obstacles= self.generate_obstacles() |
||||
|
||||
#Condición inicial para el swimmer |
||||
self.X = np.array([np.random.uniform(-.5*L, .5*L), np.random.uniform(-.5*L, .5*L), 0]) |
||||
self.init_pos = np.array([0., 0., 0.]) |
||||
valid_initial_position = False |
||||
while not valid_initial_position: |
||||
self.X = np.array([np.random.uniform(-.5*L, .5*L), np.random.uniform(-.5*L, .5*L), 0]) |
||||
valid_initial_position = True |
||||
# Comprobamos si esta inicialmente esta dentro de un obstáculo |
||||
for i in range(len(self.obstacles)//2): |
||||
obstacle_position = np.array([self.obstacles[2*i], self.obstacles[2*i+1], 0]) |
||||
if np.linalg.norm(self.X - obstacle_position) < 0.8*self.sigma: |
||||
valid_initial_position = False |
||||
break |
||||
self.init_pos = self.X |
||||
# absolute position. -inf. <= x_total < inf. and -inf. <= z_total < inf. |
||||
self.X_total = self.X |
||||
|
||||
# particle orientation |
||||
self.theta = np.random.uniform(0, 2*np.pi) # polar angle theta in the x-z plane |
||||
self.p = np.array([np.cos(self.theta), np.sin(self.theta)]) # p = [px, pz]^T |
||||
|
||||
# translational and rotational velocity |
||||
self.U = np.zeros(3, float) |
||||
self.W = np.array([0., 0., 1.]) #Velocidad angular aleatoria |
||||
|
||||
#distancia entre el swimmer y el obstáculo |
||||
self.R=np.random.uniform(0, 2.5, 1) |
||||
|
||||
# history of local and global position. Only store information for this episode. |
||||
self.history_X = [self.X] |
||||
self.history_X_total = [self.X_total] |
||||
|
||||
|
||||
# update coarse-grained state |
||||
self.update_state() |
||||
|
||||
|
||||
|
||||
def generate_obstacles(self): |
||||
obstacles=[] #el numero de obstáculos será 10*10 |
||||
cell_spacing= L/20. |
||||
ncells = 20 |
||||
|
||||
for i in range(ncells): |
||||
for j in range(ncells): |
||||
obstacle_x= i*cell_spacing - .5*L + .5*cell_spacing |
||||
obstacle_y= j*cell_spacing - .5*L + .5*cell_spacing |
||||
obstacles.append(obstacle_x) |
||||
obstacles.append(obstacle_y) |
||||
|
||||
return obstacles |
||||
|
||||
|
||||
def interaction_with_obstacles_numpy(self, obstacles, kappa, alpha, beta, gamma, Pe, Restar, dt): |
||||
F = np.array([0.,0.,0.]) |
||||
|
||||
#midpoint integration |
||||
nobs = len(obstacles)//2 |
||||
mid_obs_array = np.array(obstacles).reshape(nobs, -1) # nobs x 2 array |
||||
obs_array = np.hstack((mid_obs_array, np.zeros((nobs, 1)))) # add z=0 column |
||||
del mid_obs_array |
||||
r_nopbc = np.atleast_2d(self.X).repeat(nobs, axis=0) - obs_array |
||||
r = r_nopbc + L*np.floor(-r_nopbc/L + .5) |
||||
r[:, 2] = 0. |
||||
rnorm = np.linalg.norm(r, axis=1) |
||||
Re = (.5*self.sigma)**2*np.linalg.norm(self.W)/self.ni |
||||
S = np.reciprocal(1+np.exp(-kappa*(Re*Re*Re*np.power(rnorm, -3.)-Restar))) |
||||
F1 = alpha*np.sum(np.multiply(Re*Re*Re*np.power(rnorm, -3.)*rnorm, S))*np.cross(self.U,self.W) |
||||
F2 = beta*np.sum(np.multiply(np.cross(np.atleast_2d(self.W).repeat(nobs, axis=0), r), np.power(rnorm, -3.)[:, None]), axis=0) |
||||
F_attr = gamma*np.sum(((np.exp(-rnorm/kappa)*np.power(rnorm, -2))*(kappa+rnorm))[:, None]*r, axis=0) |
||||
F = F1+F2+F_attr |
||||
|
||||
xi=np.random.normal(0,1, size=2) #vector de números aleatorios generados a partir de una distribución normal estándar con dos componentes, xi creo que es un vector de ruido estocástico (modela el ruido térmico) |
||||
dr_therm_1 = np.sqrt(2*self.sigma**2*(.5*dt)/Pe)*xi |
||||
xi=np.random.normal(0,1, size=2) |
||||
dr_therm_2 = np.sqrt(2*self.sigma**2*(.5*dt)/Pe)*xi |
||||
|
||||
dr_mid = F[:-1]*.5*dt + dr_therm_1 |
||||
self.U = np.array([2*dr_mid[0]/dt, 2*dr_mid[1]/dt, 0]) |
||||
|
||||
r_nopbc = np.atleast_2d(self.X + np.append(dr_mid, np.zeros(1))).repeat(nobs, axis=0) - obs_array |
||||
r = r_nopbc + L*np.floor(r_nopbc/L + .5) |
||||
r[:, 2] = 0. |
||||
rnorm = np.linalg.norm(r, axis=1) |
||||
Re = (.5*self.sigma)**2*np.linalg.norm(self.W)/self.ni |
||||
S = np.reciprocal(1+np.exp(-kappa*(Re*Re*Re*np.power(rnorm, -3.)-Restar))) |
||||
F1 = alpha*np.sum(np.multiply(Re*Re*Re*np.power(rnorm, -3.)*rnorm, S))*np.cross(self.U,self.W) |
||||
F2 = beta*np.sum(np.multiply(np.cross(np.atleast_2d(self.W).repeat(nobs, axis=0), r), np.power(rnorm, -3.)[:, None]), axis=0) |
||||
F_attr = gamma*np.sum(((np.exp(-rnorm/kappa)*np.power(rnorm, -2))*(kappa+rnorm))[:, None]*r, axis=0) |
||||
F = F1+F2+F_attr |
||||
|
||||
dr = F[:-1]*dt + dr_therm_1 + dr_therm_2 |
||||
#actualizamos la posición del spinner |
||||
self.X[:-1] += dr |
||||
self.X_total[:-1] += dr |
||||
self.U = np.array([dr[0]/dt, dr[1]/dt, 0]) |
||||
|
||||
self.R = np.amin(rnorm) |
||||
#comprobamos que el spinner siga dentro del box periódico |
||||
self.periodic_boundaries() |
||||
|
||||
|
||||
def reinitialize(self, obstacles): |
||||
# absolute position. -inf. <= x_total < inf. and -inf. <= z_total < inf. |
||||
self.X = self.init_pos |
||||
self.X_total = self.init_pos |
||||
|
||||
# particle orientation |
||||
self.theta = np.random.uniform(0, 2*np.pi) # polar angle theta in the x-z plane |
||||
self.p = np.array([np.cos(self.theta), np.sin(self.theta)]) # p = [px, pz]^T |
||||
|
||||
# translational and rotational velocity |
||||
self.U = np.zeros(3, float) |
||||
self.W = np.array([0., 0., 1.]) #Velocidad angular aleatoria |
||||
|
||||
#distancia entre el swimmer y el obstáculo |
||||
self.R=np.random.uniform(0, 2.5, 1) |
||||
|
||||
# history of local and global position. Only store information for this episode. |
||||
self.history_X.clear() |
||||
self.history_X_total.clear() |
||||
self.history_X.append(self.X) |
||||
self.history_X_total.append(self.X_total) |
||||
|
||||
# update coarse-grained state |
||||
#self.update_state() |
||||
|
||||
self.t = 0 |
||||
self.obstacles = obstacles |
||||
|
||||
|
||||
def calc_reward(self, n): |
||||
first_r = self.history_X_total[-1][1]-self.history_X_total[-2][1] |
||||
if first_r >= .5*L: |
||||
print('low PBC') |
||||
self.r[n] = first_r - 1.*L |
||||
elif first_r <= -.5*L: |
||||
print('high PBC') |
||||
self.r[n] = first_r + 1.*L |
||||
else: |
||||
self.r[n] = first_r |
||||
|
||||
def update_state(self): |
||||
|
||||
#self.distance_obstacles() |
||||
#componente z de la velocidad angular |
||||
W_z = self.W[2] |
||||
if W_z <= 0.175*self.ni/(.5*self.sigma*self.sigma): |
||||
W_state = "wo" |
||||
elif W_z > 0.175*self.ni/(.5*self.sigma*self.sigma): |
||||
W_state = "wh" |
||||
else: |
||||
raise Exception("Invalid value of w detected: ", W_z) |
||||
|
||||
if self.R <= 1.25: |
||||
R_state = "ri" |
||||
elif self.R > 1.25: |
||||
R_state = "rni" |
||||
else: |
||||
raise Exception ("Invalid value of r detected: ", self.R) |
||||
|
||||
|
||||
self.my_state = (R_state, W_state) |
||||
|
||||
def take_greedy_action(self, Q): |
||||
state_index = state_lookup_table[self.my_state] |
||||
action_index = np.argmax(Q[state_index]) # find largest entry in this row of Q (i.e. this state) |
||||
Wc=0.175*self.ni/(.5*self.sigma*self.sigma) |
||||
if action_index == 0: # aumenta 0.01/8W |
||||
self.W[2] += .01/8*Wc |
||||
elif action_index == 1: # disminuye 0.01/8W |
||||
self.W[2] -= .01/8*Wc |
||||
else: |
||||
raise Exception ("Action index out of bounds: ", action_index) |
||||
return action_index |
||||
|
||||
def take_random_action(self): |
||||
action_index = np.random.randint(0, 2, 1) |
||||
Wc=0.175*self.ni/(.5*self.sigma*self.sigma) |
||||
if action_index == 0: # aumenta 0.01/8W |
||||
self.W[2] += .01/8*Wc |
||||
else: # disminuye 0.01/8W |
||||
self.W[2] -= .01/8*Wc |
||||
return action_index |
||||
|
||||
def periodic_boundaries(self, isxperiodic=True, isyperiodic=True, iszperiodic=True): |
||||
|
||||
offset = [math.floor(-self.X[0] * 1./L + 0.5), |
||||
math.floor(-self.X[1] * 1./L + 0.5), |
||||
0] |
||||
|
||||
if isxperiodic: |
||||
self.X[0] += offset[0] * L |
||||
if isyperiodic: |
||||
self.X[1] += offset[1] * L |
||||
if iszperiodic: |
||||
self.X[2] += offset[2] * L |
||||
|
||||
|
||||
|
||||
|
||||
def training(alpha0,kappa,alphaMAG,beta,gammaYUK,Pe,dt, ni, sigma, Ns=4000, Ne=5000, Naction=100, gamma=0.999, eps0=0.0, n_updates=1000, \ |
||||
RIC=False, method="Qlearning", lr_decay=None, omega=0.85, eps_decay=True, Qin=None): |
||||
# n_updates - how often to plot the trajectory undertaken by the particle during the learning process |
||||
# Ne - number of episodes |
||||
# Ns - number of steps in an episode |
||||
# alpha0 - learning rate (or starting learning rate when employing LR decay) |
||||
# gamma - discount factor, i.e. how much we weigh future to present rewards. Close to 0 = myopic view. |
||||
# eps0 - fraction of the time we allow for exploration in selecting the following action. 0 = always greedy. |
||||
# D0 - translational diffusivity |
||||
# Dr - rotational diffusivity |
||||
# RIC - Reset of Initial Conditions. First time a state-action pair is encountered, set Q[s,a] = reward |
||||
# method - choose from Q-learning, Double Q-learning (, or Expected SARSA |
||||
# lr_decay - whether or not to use learning rate decay. Options are none, or polynomial (lr=1/#(s,a)**omega) |
||||
# omega - exponent used in lr_decay: lr = 1/#(s,a)**omega |
||||
# eps_decay - whether or not to decay epsilon linearly: eff_eps = eps0/k for the k-th step |
||||
# Qin - initial Q matrix. Useful for testing performance after an extensive exploration phase. |
||||
|
||||
# if using the expected SARSA method, turn on epsilon decay since eps = 0 is simply Q-learning anyway |
||||
if method=="expSARSA": |
||||
eps_decay = True |
||||
if eps0 == 0: eps0 = 1 |
||||
|
||||
# Total reward for each episode |
||||
hist_R_tot_smart = np.zeros(Ne) |
||||
hist_R_tot_naive= np.zeros(Ne) |
||||
|
||||
# learning gain per episode |
||||
Σ = np.zeros(Ne) |
||||
|
||||
smart_stored_histories = [] # store position = f(t) every so often for an episode (smart particles) |
||||
naive_stored_histories = [] # store position = f(t) every so often for an episode (naive particles) |
||||
|
||||
# number of times each state-action pair has been explored |
||||
state_action_counter = np.zeros((N_states,N_actions)) |
||||
|
||||
# initialize a naive and a smart gyrotactic particle |
||||
naive = Swimmer(Ns, ni, sigma) |
||||
smart = Swimmer(Ns, ni, sigma) |
||||
naive.obstacles = smart.obstacles |
||||
obstacles=naive.obstacles.copy() |
||||
init_pos = copy.deepcopy(smart.X) |
||||
print(init_pos.base is None) |
||||
# initialize Q matrix to large value |
||||
if method=="doubleQ": |
||||
Q1 = L*Ns*np.ones((4, 2)) |
||||
Q2 = L*Ns*np.ones((4, 2)) |
||||
else: |
||||
Q = L*Ns*np.ones((4, 2)) # 4 states, 2 possible actions. Each column is an action, w. |
||||
|
||||
if Qin is not None: Q = Qin |
||||
|
||||
# store average Q for each episode to track convergence |
||||
avg_Q_history = np.zeros((Ne,4,2)) |
||||
|
||||
# store initial position and orientation for each episode |
||||
initial_coords = np.empty([Ne, 3], float) |
||||
for k in range(Ne): |
||||
initial_coords[k,:]=smart.X |
||||
|
||||
# iterate over episodes |
||||
k = 0 |
||||
for ep in range(Ne): |
||||
|
||||
# assign random orientation and position |
||||
#print(init_pos) |
||||
#print(smart.X) |
||||
smart.init_pos = init_pos.copy() |
||||
naive.init_pos = init_pos.copy() |
||||
smart.reinitialize(obstacles) |
||||
naive.reinitialize(obstacles) |
||||
naive = copy.deepcopy(smart) # have naive and smart share initial conditions for visualization purposes |
||||
|
||||
# store initialization |
||||
initial_coords[ep,0:3] = smart.X |
||||
|
||||
# save selected actions and particle orientation for last episodes |
||||
if ep == Ne - 1: |
||||
chosen_actions = np.zeros(Ns) |
||||
theta_history = np.zeros(Ns) |
||||
|
||||
# iterate over stages within an episode |
||||
#we have to store data like this because otherwise all history will be rewritten by the final element??? |
||||
smart_history_X_total = np.zeros((Ns, 3), float) |
||||
naive_history_X_total = np.zeros((Ns, 3), float) |
||||
for stage in range(Ns): |
||||
|
||||
# select an action eps-greedily. Note naive never changes its action/strategy (i.e. trying to swim up) |
||||
Qinput = Q1 + Q2 if method=="doubleQ" else Q |
||||
k = k + 1 # k-th update |
||||
|
||||
eff_eps = eps0/k**omega if eps_decay else eps0 # decrease amount of exploration as time proceeds |
||||
if np.random.uniform(0, 1) < eff_eps: |
||||
action = smart.take_random_action() |
||||
else: |
||||
action = smart.take_greedy_action(Qinput) |
||||
|
||||
# record action and orientation on last episode |
||||
if ep == Ne - 1: |
||||
chosen_actions[stage] = action |
||||
theta_history[stage] = smart.theta |
||||
|
||||
# record index of the prior state |
||||
old_s = state_lookup_table[smart.my_state] |
||||
|
||||
# given selected action, update the state |
||||
for step in range(Naction): |
||||
naive.interaction_with_obstacles_numpy(naive.obstacles, kappa,alphaMAG,beta,gammaYUK,Pe, .094, dt) |
||||
smart.interaction_with_obstacles_numpy(smart.obstacles, kappa,alphaMAG,beta,gammaYUK,Pe, .094, dt) |
||||
|
||||
#print(init_pos) |
||||
smart.history_X_total.append(smart.X_total.copy()) |
||||
#print('works', smart.history_X_total[-1]) |
||||
smart.history_X.append(smart.X.copy()) |
||||
naive.history_X_total.append(naive.X_total.copy()) |
||||
naive.history_X.append(naive.X.copy()) |
||||
smart_history_X_total[stage, :] = smart.X_total.copy() |
||||
naive_history_X_total[stage, :] = naive.X_total.copy() |
||||
#print(smart.history_X_total) |
||||
smart.update_state() # only need to update smart particle since naive has ka = [0, 1] always |
||||
#print(ep, smart.R, smart.W[2]) |
||||
|
||||
# calculate reward based on new state |
||||
naive.calc_reward(stage) |
||||
smart.calc_reward(stage) |
||||
|
||||
new_s = state_lookup_table[smart.my_state] |
||||
state_action_counter[new_s,action] += 1 |
||||
|
||||
# employ learning rate decay if applicable |
||||
alpha = alpha0/(1+state_action_counter[old_s,action])**omega if lr_decay else alpha0 |
||||
|
||||
# update Q matrix |
||||
if method=="doubleQ": |
||||
if np.random.uniform(0, 1) < 0.5: # update Q1 |
||||
if Q1[old_s, action] == L*Ns and RIC==True: # apply Reset of Initial Conditions (RIC) |
||||
Q1[old_s, action] = smart.r[stage] |
||||
else: |
||||
Q1[old_s, action] = Q1[old_s, action] + alpha*(smart.r[stage] + \ |
||||
gamma*np.max(Q2[new_s,:])-Q1[old_s,action]) |
||||
else: # update Q2 |
||||
if Q2[old_s, action] == L*Ns and RIC==True: |
||||
Q2[old_s, action] = smart.r[stage] |
||||
else: |
||||
Q2[old_s, action] = Q2[old_s, action] + alpha*(smart.r[stage] + \ |
||||
gamma*np.max(Q1[new_s,:])-Q2[old_s,action]) |
||||
if method=="expSARSA": |
||||
# calculate V, the expected Q value for the next state-actio pair |
||||
V = 0 |
||||
greedy_action = np.argmax(Q[new_s]) # would-be greedy action for new state |
||||
for new_action in range(N_actions): |
||||
pi = (1 - eff_eps) + eff_eps/N_actions if new_action == greedy_action else eff_eps/N_actions |
||||
V = V + pi*Q[new_s, new_action] |
||||
|
||||
if Q[old_s, action] == L*Ns and RIC==True: |
||||
Q[old_s, action] = smart.r[stage] |
||||
else: |
||||
Q[old_s, action] = Q[old_s, action] + alpha*(smart.r[stage] + gamma*V - Q[old_s,action]) |
||||
else: |
||||
if Q[old_s, action] == L*Ns and RIC==True: |
||||
Q[old_s, action] = smart.r[stage] |
||||
else: |
||||
Q[old_s, action] = Q[old_s, action] + alpha*(smart.r[stage] + \ |
||||
gamma*np.max(Q[new_s,:])-Q[old_s,action]) |
||||
|
||||
#print('test', smart.history_X_total[-1]) |
||||
# store average Q for each episode to track convergence |
||||
avg_Q_history[ep] = avg_Q_history[ep] + Q1 + Q2 if method=="doubleQ" else avg_Q_history[ep] + Q |
||||
|
||||
avg_Q_history[ep] = avg_Q_history[ep]/Ns |
||||
|
||||
# calculate Rtot for this episode |
||||
R_tot_naive = np.sum(naive.r) |
||||
R_tot_smart = np.sum(smart.r) |
||||
print('Episode %d, reward: %.5f'%(ep, R_tot_smart)) |
||||
|
||||
if R_tot_naive < .0000001: |
||||
R_tot_naive = .0000001 |
||||
# calculate learning gain for this episode |
||||
Σ[ep] = R_tot_smart/R_tot_naive - 1 |
||||
hist_R_tot_smart[ep] = R_tot_smart |
||||
hist_R_tot_naive[ep] = R_tot_naive |
||||
|
||||
# plot trajectory every so often |
||||
if ep%n_updates==0 or ep==Ne-1: |
||||
smart_stored_histories.append((ep,smart_history_X_total)) |
||||
naive_stored_histories.append((ep,naive_history_X_total)) |
||||
|
||||
# save optimal policy |
||||
if ep==Ne-1: |
||||
filename = "Policies/Q_alpha_" + str(alpha).replace(".","d") + "_Ns_" + str(Ns) + "_Ne_" + str(Ne) + \ |
||||
"_sigma_" + str(sigma).replace(".","d") + "_Pe_" + str(Pe).replace(".","d") + "_eps_" \ |
||||
+ str(eff_eps).replace(".","d") + "_epsdecay_" + str(eps_decay) |
||||
if lr_decay: filename = filename + "_omega_" + str(omega) |
||||
if method=="doubleQ": filename = filename + "_" + str(method) |
||||
if RIC: filename = filename + "_RIC_" + str(RIC) |
||||
Qout = Q1 + Q2 if method=="doubleQ" else Q |
||||
np.save(filename, Qout) |
||||
|
||||
return Qout, Σ, smart, naive, hist_R_tot_smart, hist_R_tot_naive, smart_stored_histories, naive_stored_histories, \ |
||||
state_action_counter, chosen_actions, avg_Q_history, initial_coords, theta_history, obstacles |
||||
|
||||
#Plot |
||||
|
||||
#Número de pasos |
||||
Ns = 40 |
||||
#Número de episodios |
||||
Ne=10 |
||||
|
||||
|
||||
traj = [] |
||||
|
||||
|
||||
my_alpha0 = 1.0 |
||||
my_eps0 = 1.0 |
||||
naction=100 |
||||
stepsupdate = 75 |
||||
kappa=2.5 |
||||
alphaMAG=1 |
||||
beta=1. |
||||
gammaYUK= 2.5e-4 |
||||
Pe=10000 |
||||
dt=0.0002 |
||||
ni=1. |
||||
sigma=1. |
||||
Q, Σ, smart, naive, hist_R_tot_smart, hist_R_tot_naive, smart_stored_histories, naive_stored_histories, \ |
||||
state_action_counter, chosen_actions, avg_Q_hist, initial_coords, theta_history, obstacles \ |
||||
= training(my_alpha0, kappa, alphaMAG, beta, gammaYUK, Pe, dt, ni, sigma,Ns, Ne, naction, 0.999, 0.5, stepsupdate) |
||||
|
||||
#print(smart_stored_histories[1][1][:, 0]) |
||||
#print(smart_stored_histories[0][1].shape) |
||||
fig, ax= plt.subplots(1,1) |
||||
ax.plot(np.array(traj[::2]), np.array(traj[1::2]), '.') |
||||
ax.plot(np.array(obstacles[::2]), np.array(obstacles[1::2]), '.') |
||||
|
||||
for i in range(0, Ne//stepsupdate): |
||||
ax.plot(smart_stored_histories[i][1][:, 0], smart_stored_histories[i][1][:, 1], '-', label='episode %d'%(stepsupdate*i), alpha=.7) |
||||
if i == Ne-1: |
||||
ax.plot(naive_stored_histories[i][1][:, 0], naive_stored_histories[i][1][:, 1], '-', label='naive spinner') |
||||
|
||||
|
||||
ax.set_aspect('equal') |
||||
ax.legend() |
||||
#plt.show() |
||||
fig.savefig('trajectories.png') |
||||
|
||||
|
Loading…
Reference in new issue